

A-96.310.021 / 290524

Modbus Interface Description

For AMI-II Transmitters

Customer Support

Swan and its representatives maintain a fully trained staff of technical specialists around the world. For any technical question, contact your nearest Swan representative, or the manufacturer:

Swan Analytische Instrumente AG Studbachstrasse 13 8340 Hinwil Switzerland

Internet: www.swan.ch E-mail: support@swan.ch

Document Status

Title:	Modbus Interface Description for AMI-II Transmitters				
ID:	A-96.310.021	A-96.310.021			
Revision	Issue	Issue			
00	May 2024 Introduction of AMI-II CACE Degasser and AMI-II CACE				

© 2024, Swan Analytische Instrumente AG, Switzerland, all rights reserved.

The information contained in this document is subject to change without notice.

1. Introduction

Modbus/Jbus

modes

system

The Modbus/Jbus protocol communicates using a master-slave technique, in which only one device (the master) can initiate transactions (queries). The other devices (the slaves) respond by supplying the requested data to the master, or by taking the action requested in the query. Typical master devices include host processors, PLCs etc. Typical slaves can be PLCs or intelligent transmitters/controllers like the AMI-II transmitters.

In some cases several instruments provide the same set of data and are therefore covered in the same chapter. The instruments concerned and the corresponding chapters are listed in the following table.

Instruments providing the same set of data	See chapter
AMI-II CACE Degasser and AMI-II CACE	Product-Specific Data for AMI-II CACE

1.1. The Query-Response Cycle

- **The query** The function code in the query tells the addressed slave device what kind of action to perform. The data bytes contain any additional information the slave will need to function. For example, function code 03 will query the slave to read holding registers and respond with their contents. The data field must contain the information telling the slave which register to start at and how many registers to read.
- **The response** If the slave makes a normal response, the function code in the response is an echo of the function code in the query. The data bytes contain the data collected by the slave.

Serial Modbus supports two transmission modes: ASCII or RTU. AMI-II Instruments support Modbus RTU (Remote Tertransmission mode only.

- **RTU mode** In RTU mode, each 8-bit byte in a message contains two 4-bit hexadecimal characters. The main advantage of this mode is that its greater character density allows better data throughput than ASCII for the same baud rate. Each message must be transmitted in a continuous stream. Users select the desired serial port communication parameters (baud rate, parity mode, etc). The serial parameters must be the same for all devices on a Modbus network.
 - **Coding** Eight bit binary

o 4 T

_ .

- 1 start bit
 - 8 data bits, least significant bit sent first
 - 1 bit for even / odd parity, no bit for no parity
 - 1 stop bit if parity is used, 2 bits if no parity

~

- Cyclic Redundancy Check (CRC)
- RTU framing: messages start with a silent interval of at least 3 ½ character times. A similar interval of at least 3 ½ character times marks the end of the message.

Tad. 2-1	iypicai r	nessage	Trame	

.

Start	Slave Address	Function	Data	CRC	END
T1-T2-T3-T4	8 Bits	8 Bits	n x 8 Bits	16 Bits	T1-T2-T3-T4

1.2. Data and Control Functions

Data address in Modbus messages

inputs

All data addresses in Modbus messages are referenced to zero. The first occurrence of a data item is addressed as item number zero. For example:

• Holding Register 40001 is addressed as register 0000 in the data address field of the message. The function code field already specifies a holding register operation. Therefore the 4x reference is implicit.

Modbus The list below shows the function codes supported by the AMI-II Instruments. Codes are listed in decimal. Function codes not supported return an exception response 02 to the master.

Code	Name	Description
02	Read Input Status	Read Alarm & Status Bits
03	Read Holding Registers	Read Parameter Data
04	Read Input Registers	Read Process Data
05	Force Single Coil	Set Relays, Reset Instrument
16	Preset Multiple Registers	Preset Parameter Data (SWAN Use Only)

Data representation The process and parameter data of the AMI-II Instruments are represented by float (IEEE 754), signed or unsigned integer values. Depending on the range of the value, float, integer8, unsigned8, integer16, unsigned16, integer32 or unsigned32 representation is used.

Discrete Alarm and status bits are packed as one input per bit of the data field.

Definition: big-endian and little-endian are terms that describe the order in which a sequence of bytes are stored in computer memory. Big-endian is an order in which the "big end" (most significant value in the sequence) is stored first (at the lowest storage address). Little-endian is an order in which the "little end" (least significant value in the sequence) is stored first. For example, in a big-endian computer, the two bytes required for the hexadecimal number 4F52 would be stored as 4F52 in storage. In a little-endian system, it would be stored as 524F.

Note: Big-endian format is used.

2. Product-Specific Data for AMI-II CACE

2.1. Introduction

The AMI-II CACE is a microprocessor-controlled two-channel electronic transmitter & controller for the conductivity measurement in power cycles. It can be operated as an intelligent slave device on the Modbus/JBUS using twisted pair RS485 lines.

2.2. Function Description

2.2.1 Read Input Status (Alarm & Status Bits), Function 02

Up to 48 bits of alarms are available as summarized in the table below:

Addr.	Туре	Description			
0	Alarm	Cond. 1 Alarm high			
1	Alarm	Cond. 1 Alarm low			
2	Alarm	Cond. 2 Alarm high			
3	Alarm	Cond. 2 Alarm low			
4	Alarm	Cond. 3 Alarm high			
5	Alarm	Cond. 3 Alarm low			
6	Alarm	Temp. 1 high			
7	Alarm	Temp. 1 low			
8	Alarm	Sample Flow high			
9	Alarm	Sample Flow low			
10	Alarm	Temp. 1 shorted			
11	Alarm	Temp. 1 disconnected			
12	Alarm	Case Temp. high			
13	Alarm	Case Temp. low			
14	Alarm	pH Calculation undefined			
15	Alarm	Degasser status			
16	Alarm	Control Timeout			
17	Alarm	Degasser disconnected			
18	Alarm	Temp. 2 shorted			
19	Alarm	Temp. 2 disconnected			
20	Alarm	Temp. 3 shorted			
21	Alarm	Temp. 3 disconnected			
22	Alarm	Degasser Ctl Timeout			
23	Alarm	Input Active			
24	Alarm	IC MK41T56			
25	Alarm	IC LM75			
26	Alarm	-			
27	Alarm	-			
28	Alarm	Calibration Degasser			
29	Alarm	I2C Frontend			
30	Alarm	Calibration Recout			
31	Alarm	Wrong Front-end			
32	Alarm	pH Alarm high			
33	Alarm	pH Alarm low			

Addr.	Туре	Description
34	Alarm	Alkali Alarm high
35	Alarm	Alkali Alarm low
36	Alarm	Temp. 2 high
37	Alarm	Temp. 2 low
38	Alarm	Temp. 3 high
39	Alarm	Temp. 3 low
40	Alarm	-
41	Alarm	Degasser blocked
42	Alarm	EDI out of range
43	Alarm	No sample flow
44	Alarm	EDI DAC disconnected
45	Alarm	EDI ADC disconnected
46	Alarm	EDI module worn out
47	Status	EDI module exhausted

2.2.2 Read Input Registers (Process data): Function 04

The process data are made up of the measuring values of the AMI-II CACE.

Byte Offset	Data type	Description	Range of ph value	ysical
0	Float	Cond. 1 (sc)	0-3000	μS
4	Float	Cond. 2 (cc)	0-3000	μS
8	Float	Cond. 3 (dc)	0-3000	μS
12	Float	Temp. 1	-25 to +270	°C
16	Float	Temp. 2	-25 to +270	°C
20	Float	Temp. 3	-25 to +270	°C
24	Float	Flow	0-50	l/h
28	Float	pH	7–11	pН
32	Float	Alkalyzer	0–100	mg
36	Float	Cond. 1 uc	0-3000	μS
40	Float	Cond. 2 uc	0-3000	μS
44	Float	Cond. 3 uc	0-3000	μS
48	Float	Pt 1000 Temp. 1	500-2400	Ohm
52	Float	Pt 1000 Temp. 2	500–2400	Ohm
56	Float	Pt 1000 Temp. 3	500–2400	Ohm
60	Float	Raw Flow	0–100	Hz
64	Float	Case Temperature	-55 to +125	°C
68	Float	EDI voltage	0-12000	mV
72	Float	EDI current	0–500	mA
76	Float	Degasser Temp. Heat. Exch.	-500 to +740	°C
80	Float	Degasser Temp. Steam	-500 to +740	°C
84	Float	Degasser Temp. Heater	-500 to +740	°C
88	Float	Degasser Temp. Setpoint	-500 to +740	°C
92	Float	Degasser PWM	0–100	%
96	Float	Degasser Air Pressure	0–1500	hPa

Tab. 3-1 Input Registers

Tab 04	Innest De sieters
Tab. 3-1	Input Registers

Byte Offset	Data type	ta type Description		Range of physical value	
100	Float	Degasser Case Temp.	-55–125	°C	
104	Float	Signal Output 1	0–20	mA	
108	Float	Signal Output 2	0–20	mA	
116	INSTRUMENT_STATUS	Instrument Display Status			

2.2.3 Force Single Coil: Function 05

This function is used to set relays and reset the instrument. Relays can only be forced if set to fieldbus function

Tah	3-2	Single	Coil
Tab.	J-2	Singic	001

Addr.	Description	OFF (0)	ON (1)
0-1	Relay Contacts 1 and 2	open	close
15	Reset Instrument (like hardware reset)		reset

2.2.4 Manufacturer-specific Data Types & Records

DATE_STAMP Format

ΥΥΥΥΥΥ	ММММ	DDDDD	ннннн	ММММММ	SSSSSS
Year	Month	Date	Hour	Minutes	Seconds
0–63	1–12	1–31	0–23	0–59	0–59

	Devenueter	0:	Dete Ture	Description	Dense
IN	Parameter STRUMENT STATUS	312e	Data Type Record	Description Instrument Display Status	Range
	Language	1	Unsigned8	Language Selection	0 = German 1 = English 2 = French 3 = Spanish
	RunMode	1	Unsigned8	Run Mode	0 = Run 1 = Hold 2 = Off 3 = Grab
	AlaMode	1	Unsigned8	Alarm Mode	0 = Off 1 = on 2 = Blinking
	MaintMode	1	Unsigned8	Maintenance Mode	0 = Off 1 = on 2 = Blinking
	RelMode1	1	Unsigned8	Relais 1 Display Mode	0 = None 1 = Limit Hi On 2 = Limit Hi Off 3 = Limit Lo On 4 = Limit Lo Off 5 = Timer Off 6 = Timer On 7 = Percent Control 8 = Valve 9 = Bus
	RelMode2	1	Unsigned8	Relais 2 Display Mode	0 = None 1 = Limit Hi On 2 = Limit Hi Off 3 = Limit Lo On 4 = Limit Lo Off 5 = Timer Off 6 = Timer On 7 = Percent Control 8 = Valve 9 = Bus
	PercDos1	2	Unsigned16	Percent Dosage Relais 1	0–100 %
	PercDos2	2	Unsigned16	Percent Dosage Relais 2	0–100 %
	MaintValue	2	Unsigned16	Maintenance Value	0–100 %
	AlarmsActive	4	Unsigned32	Alarms Pending	Bit Coded
	AlarmsLatched	4	Unsigned32	Alarms no Acknowledged	Bit Coded
	AlarmsActiveE	4	Unsigned32	Extended Alarms Pending	Bit Coded
	AlarmsLatchedE	4	Unsigned32	Extended Alarms not Acknowledged	Bit Coded
	TimeStamp	4	DATE STAMP	Current Time	
er	id Record				

Page intentionally left blank.

A-96.310.021 / 290524

Swan Products - Analytical Instruments for:

Swan is represented worldwide by subsidiary companies and distributors and cooperates with independent representatives all over the world. For contact information, please scan the QR code.

Swan Analytical Instruments · CH-8340 Hinwil www.swan.ch · swan@swan.ch

SWISS 🚹 MADE

